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First lipase catalysed resolution of epoxy enol esters
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aLaboratoire SEESIB UMR CNRS 6504, Université Blaise-Pascal, 63177 Aubière Cedex, France
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Abstract—We report the first enzyme-catalysed kinetic resolution of epoxy enol esters. The lipase-promoted hydrolysis of these
compounds provided a-hydroxyketones or a-hydroxyaldehydes (arising from the spontaneous rearrangement of the epoxy enols)
and the residual esters with moderate to good enantioselectivity (E up to 100).
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

a-Hydroxyaldehydes are valuable synthetic intermediates
and are also building blocks for the synthesis of carbohy-
drates and analogues via chemical or enzymatic aldol reac-
tions.1 As part of a research program designed to explore
the utility of transketolase and fructose-1,6-bisphosphate
aldolase in organic synthesis, we required a number of chi-
ral a-hydroxyaldehydes preferably in the enantiomerically
pure form.2 a-Hydroxyaldehydes are generally accessible
by two main routes. First, a general method based on
the ozonolysis of allylic alcohols provides the aldehyde
functionality. Enantiomerically enriched allylic alcohols
can be obtained by enzymatic resolution.3 Alternatively,
a-hydroxyaldehyde acetals are obtained, either by the ring
opening of a 2,3-epoxy-propionaldehyde-diethylacetal by
various nucleophiles or by a Barbier type reaction on a gly-
oxal monoacetal.4 The acetals are then readily hydrolysed
in acidic media. a-Hydroxyaldehydes often present as olig-
omers are very difficult to purify and characterise so that
the last step of their synthesis has to be very efficient and
must not generate by-products. However, in the first meth-
od, the reductive work-up after hydrolysis produces either
triphenylphosphine oxide or dimethylsulfoxide, and in the
second method, the acidic conditions required for acetal
hydrolysis can lead to partial racemisation or isomerisa-
tion into a-hydroxyketones.
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Therefore, the preparation of chiral a-hydroxyaldehydes
remains an issue and we looked for alternative enzy-
matic methods to generate these compounds under mild
conditions. In 1996, Kern and Spiteller5 reported the
synthesis of three racemic long chain aliphatic a-hydr-
oxyaldehydes by a thermal rearrangement of epoxy enol
esters in the presence of a protic acid, followed by
enzymatic hydrolysis of the intermediate a-acetoxyalde-
hydes (Scheme 1). More recently, Shi and co-workers.6

showed that the rearrangement of enol ester epoxides
to a-acyloxy ketones under thermal or acidic conditions
is stereoselective.

It occurred to us that direct enantioselective enzyme
catalysed hydrolysis of epoxy enol acetates could pro-
vide optically pure a-hydroxyaldehydes or a a-hydroxy-
ketones via an unstable hemiketal, and residual epoxy
enol acetates.

Herein, we report which are, to the best of our know-
ledge, the first enzyme-catalysed resolutions of epoxy
enol esters (also called enol ester epoxides) to give
enantiomerically enriched a-hydroxyaldehydes or a-
hydroxyketones.
2. Results and discussion

2.1. Synthesis of substrates

We prepared racemic enol ester epoxides 1, 2, 3a–c
(Fig. 1) by two different routes. Compounds 1 and 2
can lead to a-hydroxyketones whereas compounds
3a–c are precursors for a-hydroxyaldehydes. Also, it is
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Scheme 1. Synthesis of a-hydroxyaldehydes from enol acetate epoxides: (a) epoxidation, (b) thermal or Lewis acid catalysed rearrangement, (c)
protic acid catalysed rearrangement, (d) enzymatic hydrolysis.
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Figure 1. Epoxy enol ester substrates.
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necessary to control the E–Z configuration of acyclic
compounds 2, 3a–c since the presence of the two diaste-
reoisomers will decrease the enantiomeric purity of the
desired hydroxyaldehydes or hydroxyketones.

According to a reported procedure,7 1-acetoxy-1,2-
epoxycyclohexane 1 was prepared from cyclohexanone
by acylation with isopropenyl acetate in the presence
of p-toluenesulfonic acid (p-TsOH) as a catalyst fol-
lowed by epoxidation of the intermediate cyclohexanone
enol acetate by m-chloroperbenzoic acid (MCPBA).
1-Acetoxy-1,2-epoxy-1-phenylpropane 2 was obtained
by a similar two-step procedure (Scheme 2). Propiophe-
none enol ester 4 was prepared from propiophenone and
acetic anhydride using p-TsOH as a catalyst with a 43%
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Scheme 2. Synthesis of 2, 3a–c. Reagents and conditions: Ac2O, p-TsOH,
MCPBA, CH2Cl2, 1 h, 0 �C, 3 h room temperature, 74% yield; (c) Ph3P@CHC
79%; (d) MCPBA, CH2Cl2, room temperature. Compound 6a, 2 days 47%,
yield. The isomeric ratio Z/E = 10 was determined by
gas chromatography and a flash column chromatogra-
phy afforded pure Z-4. The epoxidation of this isomer
was carried out with MCPBA (74% yield).

We then applied the above method based on the epoxi-
dation of enol esters to the preparation of compounds
3a–c but inseparable mixtures of E–Z isomers were ob-
tained. We therefore examined another way of control-
ling the stereochemistry of the products, starting from
a,b-unsaturated ketones 6a–c (Scheme 2). Compound
6b is commercially available, 6a and 6c were prepared
from aldehydes 5a and 5c by the Wittig reaction with
1-triphenylphosphoranylidene-2-propanone in 58% and
79% yield, respectively. It is generally found that ylides
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containing stabilising groups give E alkenes.8 The E
configuration was confirmed by 1H NMR analysis of
the olefinic protons and no Z isomer was detected.
The tandem Baeyer–Villiger oxidation–epoxidation9 of
a,b-unsaturated ketones 6a–c with an excess of m-chloro-
perbenzoic acid provided enol ester epoxides 3a–c (47%,
68% and 35% yield). The Baeyer–Villiger reaction has
been demonstrated to occur with retention of configura-
tion.10 The E (trans) configuration of the oxirane ring
was confirmed by 1H NMR analysis; a small coupling
constant (J 6 1 Hz) is expected for H-1 in the E (trans)
configuration whereas J P 3 Hz is found in compounds
with the Z (cis) configuration.5 Dimethoxypropanal 5c
was obtained by ozonolysis of 4,4 0-dimethoxybutene.11

2.2. Enzymatic kinetic resolutions

In this preliminary study, in order to demonstrate the
validity of our approach, we studied the hydrolysis of
1, 2, 3a–c in the presence of a few common commercial
enzymes.12

Stereoselective enzymatic hydrolyses of esters can be
carried out in aqueous buffers, in biphasic mixtures of
water and an organic solvent, and in water saturated or-
ganic solvents; an alternative is the transesterification
(alcoholysis) in a solvent of low polarity containing a
simple alcohol.13
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Scheme 3. Enzymatic alcoholysis of 1-acetoxy-1,2-epoxycyclohexane 1.

Table 1. Enzymatic alcoholysis/hydrolysis of 1-acetoxy-1,2-epoxy cyclohexa

Entry Enzymea Conditionsb Time (h) cc (%)

1 CAL EtOH 1% 192 56
2 PSL EtOH 1% 26 53
3 PSL 48 60
4 CRL EtOH 1% 17.5 50
5 CCL 96 59
6 CCL EtOH 1% 32 59
7 CCL H2O satd 7 55

a CAL: Candida antarctica lipase B; PSL: Pseudomonas sp. lipase; CRL: Can
b 1 mmol (156 mg) of substrate, 200 mg of lipase in 3 ml of diisopropyl ethe
c After isolation of products.
d Optical purity according to literature data.
1-acetoxy-1,2-epoxycyclohexane 1 was chosen as the
model substrate to investigate the kinetic resolution pro-
cess. This compound is unstable in the presence of water
and we operated in diisopropyl ether containing 1% eth-
anol. The resolution was carried out on 1 mmol of sub-
strate, 200 mg of enzyme in 3 ml of solvent. The results
are reported in Scheme 3 and Table 1. The enantioselec-
tive reaction of (±)-1 in the presence of various lipases
gave a-hydroxyketone (R)-8, a small amount of the cor-
responding a-acetoxyketone (R)-9, and the residual
starting material (1S,2S)-1. The progress of the reaction
c (conversion rate) was monitored by gas chromatogra-
phy. Comparison of the specific rotation of chiral non-
racemic 1 with data reported in the literature6 estab-
lished its optical purity and its absolute configuration.
The stereochemistry of the reactions was further con-
firmed by the optical rotation data of known (R)-(+)-
2-hydroxycyclohexanone 8.14 The enantiomeric ratio
E15 was measured using the extent of conversion c and
the optical purity of the starting material. The reaction
mechanism is shown in Scheme 3. Alcohol 8 results from
the rearrangement of hemiacetal 7 provided by the enzy-
matic ester hydrolysis or alcoholysis. The formation of
acetoxycyclohexanone 9 can be due to the esterification
of 8. Indeed lipases are able to acylate alcohols in non-
aqueous solvents in the presence of acyl group donors,
here the substrate 1. During the reaction, an inter-
mediate acetyl-enzyme is formed, which undergoes an
O O
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Product ratio 1/8/9 Residual 1 optical purity (%)d E

44/36/20 71 7.2
47/45/8 82 15
40/35/25 83 8.6
50/45/5 90 40
41/34/25 98 23
40/42/18 88 11
45/45/10 92 22

dida rugosa lipase; CCL: Candida cylindracea lipase.
r.
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hydrolysis, or in the absence of water an alcoholysis by
added ethanol or alcohol 8. When no EtOH was added
(assays 3 and 5), residual water present in the enzyme
preparation and hydroxycyclohexanone 8 were the
nucleophiles competing in the enzyme regeneration
and the yield in 9 increased.

1-Acetoxy-1,2-epoxy-1-phenylpropane 2 reacts very
slowly in organic media and is stable in a phosphate
buffer pH 7. Thus, the hydrolysis was carried out on
1 mmol of substrate in 50 ml of this buffer in the pres-
ence of 27 mg of enzyme, or in a biphasic system hexane
(30 ml)/phosphate buffer (30 ml) in the presence of 2 mg
of enzyme. The results are summarised in Scheme 4 and
Table 2. The enantiomeric excesses and the absolute
configurations were determined by comparison with lit-
erature data; the absolute configurations of residual (+)-
26 and (�)-2-hydroxy-1-phenylpropan-1-one 1016 are
(1S,2R) and (S), respectively. Lipases from Pseudo-
monas sp. (PSL), Candida cylindracea (CCL) and Can-
dida rugosa (CRL) showed very low enantioselectivity
towards substrate 2. The best results were obtained with
Candida antarctica lipase B (CAL) in phosphate buffer
(E = 34).

Next, we completed some screening experiments in order
to find hydrolases with the ability to resolve enol ester
epoxides 3a–c leading to a-hydroxyaldehydes. Of the en-
zymes and conditions tested, the hydrolysis of 3a–c
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Scheme 4. Enzymatic hydrolysis of epoxy enol esters 2 and 3a–c.

Table 2. Enzymatic hydrolysis of epoxy enol esters 2, 3a–c

Entry Substrate Conditions Enzyme Time (h

1 2 Buffera CALb 17
2 2 Buffera PPLb 18
3 2 Buffer/hexaned CAL 31
4 3a Buffer/hexaned CAL 1
5 3b Buffer/hexaned CAL 4
6 3b Buffer/hexaned PSLb 24
7 3c Buffer/hexaned CAL 11

a 1 mmol (228 mg) of substrate in 50 ml of phosphate buffer pH 7, 27 mg of
b Candida antarctica lipase; PPL: Porcine pancreatic lipase; PSL: Pseudomon
c Calculated from the optical purity of isolated residual substrate and produ
d 1 mmol of substrate (228, 240, 158 and 190 mg of 2, 3a–c) in 30 ml of hex

enzyme.
e Determined by GC analysis.
(1 mmol) in a biphasic system buffer/hexane in the pres-
ence of CAL (2 mg) gave the best results (Scheme 4 and
Table 2). In all hydrolysis reactions, the (S,S) enol ester
epoxide was the fast reacting enantiomer yielding the
(S)-hydroxyaldehyde (vide infra) and leaving the
(R,R)-epoxide unreacted in enantiomerically enriched
form. The formation of a-acetoxyaldehydes was not
observed with these substrates. The enantiomeric excess
of the remaining epoxides were measured by 1H NMR
spectroscopy using Eu(hfc)3 as a chiral shift reagent
(substrates 3a and 3c) or by chiral gas chromatography
on a chiraldex c-TFA column (substrate 3b). The enan-
tiomeric compositions and absolute configurations of
aldehydes 11a–c were determined by conversion to the
corresponding dimethylacetals 12a–c (in the case of
11c, a transacetalation produced the bis-dimethylacetal)
followed by 19F and 1H analysis17 of the Mosher’s esters
(a-methoxy-a-trifluoromethyl-a-phenyl acetates 13a–c)
(Scheme 5). The absolute configurations of 11a and
11c were further confirmed by correlation with 1,2-diol
14a18 and 14c19 of known absolute configuration.

In conclusion, we have developed the first biocatalytic
kinetic resolution of enol ester epoxides leading to
homochiral enol ester epoxides and a-hydroxyaldehydes
or a-hydroxyketones. Enol ester epoxides are syntheti-
cally useful intermediates. One enantiomer (1R,2R) in
the case of 3a–c can be obtained in a good enantiomeric
excess. The reacting enantiomers (1S,2S) in the case of
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ane and 30 ml of phosphate buffer (0.1 M, pH 7) containing 2 mg of
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3a–c lead to the (2S) a-hydroxyaldehydes of good enan-
tiomeric excess if the hydrolysis is stopped before 50%
conversion (depending of the E value). On the other
hand, the residual epoxides can be hydrolysed under
mild conditions in the presence of a nonspecific esterase
(like pig liver esterase or pig pancreatic lipase (Table 2))
to lead to (2R) a-hydroxyaldehydes. Moreover, residual
ester enol epoxides can be submitted to a stereoselective
rearrangement with retention or inversion of configura-
tion to provide either enantiomer of a-acyloxy aldehydes
or ketones.6 By this methodology, both isomers of
a-hydroxyaldehydes, which are prone to racemise or
isomerise into hydroxyketone can be obtained in aque-
ous solution at neutral pH. The scope and limitations
of this novel biocatalytic reaction and its synthetic appli-
cation are currently being studied in detail.
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J. M.; Quiñovà, E.; Riguera, R. Chem. Rev. 2004, 104, 17–
118.

18. (a) Ramachary, D. B.; Barbas, C. F. Org. Lett. 2005, 7,
1577–1580; (b) Cordova, A.; Sunden, H.; Bogevig, A.;
Johansson, M.; Himo, F. Chem. Eur. J. 2004, 10, 3673–
3684.

19. Guérard, C.; Alphand, V.; Archelas, A.; Demuynck, C.;
Hecquet, L.; Furstoss, R.; Bolte, J. Eur. J. Org. Chem.
1999, 3399–3402.


	First lipase catalysed resolution of epoxy enol esters
	Introduction
	Results and discussion
	Synthesis of substrates
	Enzymatic kinetic resolutions

	References and notes


